skip to main content


Search for: All records

Creators/Authors contains: "Mao, Zhigang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As the capacity of DRAM continues to grow, the refresh operation rapidly becomes the performance and power-efficiency bottleneck. Also, restore time, the time given for recharging cells post access, makes an increasingly large amount of negative impact on performance. To tackle these problems, in this paper, we propose an in-situ charge detection and adaptive data restoration DRAM (CDAR-DRAM) architecture, which can dynamically adjust the refresh rate and also relax the constraints on restore time. The proposed CDAR-DRAM employs a low-cost skewed-inverter-based detector, which can reduce the excessive timing margins that prior work added to guarantee the functionality of leaky DRAM cells under the worst-case temperature condition. Moreover, an adaptive DRAM refresh and restore scheme is proposed, which can switch automatically between two modes: (i) a refresh mode that supports adaptive refresh rate, and (ii) a restore mode that relaxes the constraints on restore time dynamically for cells having sufficient charge. With the transistor-and architecture-level simulations, we evaluate the CDAR-DRAM in an 8-core system across different workloads. Compared with the prior art, the proposed architecture achieves a 9.4% improvement in system performance and a 14.3% reduction in energy consumption, without requiring the time-consuming profiling process which many prior works employed. 
    more » « less
  2. null (Ed.)
  3. Emerging embedded systems, such as autonomous robots/vehicles, demand a new system-on-a-chip (SoC) that is ultra-low power (mW or even sub-mW level) but highly robust. Such an SoC typically integrates heterogeneous building blocks for supporting a range of features, each ideally operating in an independent voltage and frequency (V/F) domain [1]. In such an architecture, a network-on-chip (NoC) has played a key role to enable high-speed and energy-efficient networking. However, it is increasingly challenging to meet a robustness target since each V/F domain uses a significantly different voltage, e.g., from nominal 1V to near-threshold voltage (NTV), and clock frequency, e.g., from hundreds of MHz to sub-MHz. Furthermore, any two clocks may have uncertain and time-varying phase and frequency relationships. These properties significantly worsen robustness, particularly metastability, in an NoC. 
    more » « less